NEXT-GENERATION POWER SEMICONDUCTORS: MARKETS MATERIALS, TECHNOLOGIES

The emerging market for silicon carbide (SiC) and gallium nitride (GaN) power semiconductors is forecast to pass the $1 billion mark in five years, energized by demand from hybrid and electric vehicles, power supplies and photovoltaic (PV) inverters. Worldwide revenue from sales of SiC and GaN power semiconductors is projected to rise to nearly $1 million in 2018, up from just $210 million in 2015, according to The Information Network, a leading global source of critical information and insight. Market revenue is also expected to rise with double digit growth annually for the next decade.

SiC Schottky diodes have been on the market for more than 10 years, with SiC metal-oxide semiconductor field-effect transistors (MOSFET), junction-gate field-effect transistors (JFET) and bipolar junction transistors (BJT) appearing in recent years, according to the latest information from the latest IHS SiC & GaN Power Semiconductors Report. SiC MOSFETs are proving very popular among manufacturers, with several companies are already offering them, and more are expected to in the coming year. The introduction of 900 volt (V) SiC MOSFETs, priced to compete with silicon SuperJunction MOSFETs, as well as increased competition among suppliers, forced average prices to fall in 2015.

GaN power transistors and GaN modules have only just recently appeared in the market. GaN is a wide bandgap material offering similar performance benefits to SiC, but with greater cost-reduction potential. This price and performance advantage is possible, because GaN power devices can be grown on silicon substrates that are larger and less expensive than SiC. Although GaN transistors are now entering the market, the development of GaN Schottky diodes has virtually
By 2018, GaN-on-silicon (Si) devices are expected to achieve price parity with -- and the same superior performance as -- silicon MOSFETs and insulated-gate bipolar transistors (IGBTs). When this benchmark is reached, the GaN power market is expected to surpass $600 million in 2025. In contrast, the more established SiC power market -- mainly consisting of SiC power modules -- will hit $3 billion in the same time period.

Overall revenues for the power semiconductors market globally dropped slightly in 2015, due primarily to macroeconomic factors and application-specific issues.

The global market for power semiconductors fell 2.6% to US$34 billion in 2015. Discrete power semiconductor product revenues declined 10.1%, while power module revenues decreased by 11.4% and power integrated-circuit (IC) revenues increased by 4.5% overall.

Infineon Technologies was the leading power semiconductor manufacturer in 2015 with 12% of the market, followed by Texas Instruments with 11% and STMicroelectronics with 6%.

While Infineon's acquisition of International Rectifier was the largest acquisition last year, several other deals also changed the terrain of the power semiconductor market landscape. Key deals in 2015 included the following: MediaTek acquired RichTek; Microchip acquired Micrel; NXP Semiconductors acquired Freescale Semiconductor; NXP Semiconductors also created WeEn Semiconductors, a joint venture with Beijing JianGuang Asset Management (JAC Capital); CSR Times Electric merged with China CNR Corporation to form CRRC Times Electric; and ROHM Semiconductor acquired Powervation.
The TOC of the 235 page report is below. Price is $2,495. Ordering can be done from our website at www.theinformationnet.com. Contact us with questions.

![Table Of Contents]

NEXT-GENERATION POWER SEMICONDUCTORS: MARKETS MATERIALS, TECHNOLOGIES

<table>
<thead>
<tr>
<th>Table Of Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 Introduction</td>
</tr>
<tr>
<td>1.1 Manufacturing Processes Are Differentiation Factors</td>
</tr>
<tr>
<td>1.2 Vertical Structure Devices Differ From Usual MOS Planar Structure</td>
</tr>
<tr>
<td>1.3 Super Junction Processes</td>
</tr>
<tr>
<td>Chapter 2 Applications of Power Semiconductors</td>
</tr>
<tr>
<td>2.1 Power Semiconductors in Renewable Energy</td>
</tr>
<tr>
<td>2.1.1 Solar</td>
</tr>
<tr>
<td>2.1.2 Wind</td>
</tr>
<tr>
<td>2.2 Power Semiconductors in Hybrid & Electric Vehicles</td>
</tr>
<tr>
<td>2.2.1 Automotive Megatrends</td>
</tr>
<tr>
<td>2.2.2 Wide Bandgap Devices for HEVs/EVs</td>
</tr>
<tr>
<td>2.3 Power Semiconductors in LED Lighting</td>
</tr>
<tr>
<td>2.4 Power Semiconductors in Industrial Motor Drives</td>
</tr>
<tr>
<td>2.5 Power Semiconductors in Smart Home Market</td>
</tr>
<tr>
<td>2.6 GaN and SiC Market Forecast For End Applications</td>
</tr>
<tr>
<td>Chapter 3 Market Analysis</td>
</tr>
<tr>
<td>3.1 Position of Power Semiconductors in Semiconductor Market</td>
</tr>
<tr>
<td>3.2 Growth Potential of IGBTs and Power MOSFETs</td>
</tr>
<tr>
<td>3.3 End Application Markets</td>
</tr>
<tr>
<td>3.4 Wide Bandgap Power Semiconductor Market</td>
</tr>
<tr>
<td>Chapter 4 Next-Generation Power Semiconductors</td>
</tr>
</tbody>
</table>
4.1 Expectations for Overcoming Silicon's Limitations 4-1
4.2 Expectations Of SiC and GaN as Next-Generation Substrates 4-3
4.3 Benefits of Wide Band Gap Semiconductors 4-3
4.4 SiC versus GaN 4-5
4.4.1 Material Properties 4-6
4.4.2 Material Quality 4-8
4.4.3 SiC Lateral Devices: 4-10
4.4.4 SiC Vertical Devices 4-10
4.4.5 GaN Lateral Devices 4-12
4.5 Fabrication of SiC devices 4-22
4.5.1 Bulk and Epitaxial Growth of SiC 4-22
4.5.1.1 Bulk Growth 4-22
4.5.1.2 Epitaxial Growth 4-23
4.5.1.3 Defects 4-23
4.5.2 Surface Preparation 4-25
4.5.3 Etching 4-27
4.5.4 Lithography 4-28
4.5.5 Ion Implantation 4-28
4.5.6 Surface Passivation 4-29
4.5.7 Metallization 4-32
4.6 Fabrication of GaN devices 4-33
4.6.1 GaN Challenges 4-37
4.6.1.1 Costs 4-37
4.6.1.2 Reliability 4-40
4.6.1.3 Component Packaging and Thermal Reliability 4-41
4.6.1.4 Control 4-41
4.6.1.5 Device Modeling 4-42
4.7 Packaging 4-42

Chapter 5 Company Profiles 5-1

5.1 Power Semiconductor Companies 5-1
5.1.1 Infineon 5-1
5.1.2 Mitsubishi 5-3
5.1.3 Toshiba 5-5
5.1.4 STMicroelectronics 5-7
5.1.5 Vishay 5-8
5.1.6 International Rectifier 5-11
5.1.7 Fairchild 5-13
5.1.8 Fuji Electric 5-16
5.1.9 Renesas 5-17
5.1.10 Semikron 5-19
5.1.11 NXP Semiconductors 5-20
5.2 SiC Wafer-Related Companies 5-22
5.3 GaN Wafer-Related Companies 5-22
5.4 Profiles of Companies with Next-Generation Activities 5-23
5.4.1 Mitsubishi Electric 5-23
5.4.2 Fuji Electric Holdings 5-24
5.4.3 Toshiba 5-25
5.4.4 Rohm 5-26
5.4.5 Sanken Electric 5-28
5.4.6 Shindengen Electric 5-29
5.4.7 Infineon 5-31
5.4.8 Microsemi 5-32
5.4.9 Cree 5-33
5.4.10 GeneSiC Semiconductor 5-34
5.4.11 Semisouth Laboratories 5-35
5.4.12 United Silicon Carbide 5-36
5.4.13 MicroGaN 5-37
5.4.14 Powerex 5-38
5.4.15 Fairchild 5-38
5.4.16 International Rectifier 5-39
5.4.17 Nitronix 5-39

List of Figures

1.1 Evolution Of IGBT Chip Structure 1-4
1.2 Effects Of Miniaturization Of IGBT Chip 1-6
1.3 SiC Trench-Type MOSFET And Resistance Reduction As Compared With DMOSFET 1-7
1.4 Planar And Vertical (Trench) MOSFET 1-9
1.5 Schematic Of A FinFET 1-11
1.6 Schematic Of A MOSFET And Super Junction MOSFET 1-13
1.7 Process Flow For Super Junction MOSFET 1-14
2.1 Forecast Of Solar Power 2-4
2.2 Full Bridge IGBT Topology 2-5
2.3 PV Inverter Market Distribution 2-8
2.4 Block Diagram Of Microcontroller-Based Inverter 2-11
2.5 Worldwide Wind Turbine Shipments 2-14
2.6 Top Wind Power Capacity by Country 2-15
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Bill Of Materials For A Typical 30-50kw Inverter</td>
<td>2-20</td>
</tr>
<tr>
<td>2.8</td>
<td>A Simple Diagram Of A HEV Traction Drive System.</td>
<td>2-22</td>
</tr>
<tr>
<td>2.9</td>
<td>A More Complex Diagram Of PEEM In A Plug-In Hybrid Electric Vehicle (PHEV)</td>
<td>2-23</td>
</tr>
<tr>
<td>2.10</td>
<td>Conducting And Switching Losses For Inverter</td>
<td>2-25</td>
</tr>
<tr>
<td>2.11</td>
<td>Unit Pricing Trends In Power Semiconductors</td>
<td>2-27</td>
</tr>
<tr>
<td>2.12</td>
<td>HEV/EV Shipment Forecast</td>
<td>2-31</td>
</tr>
<tr>
<td>2.13</td>
<td>System And Component Costs For Wide Bandgap Semiconductors</td>
<td>2-32</td>
</tr>
<tr>
<td>2.14</td>
<td>Vertical And Lateral HEMY</td>
<td>2-34</td>
</tr>
<tr>
<td>2.15</td>
<td>GaN Lateral And GaN Vertical HEMTs In EVs</td>
<td>2-38</td>
</tr>
<tr>
<td>2.16</td>
<td>Market Drivers For LED Biz And Applications</td>
<td>2-41</td>
</tr>
<tr>
<td>2.17</td>
<td>SSL Vs. Classical Technologies</td>
<td>2-42</td>
</tr>
<tr>
<td>2.18</td>
<td>LED Performance Vs. Traditional Light Sources</td>
<td>2-43</td>
</tr>
<tr>
<td>2.19</td>
<td>Energy Production And Use Comparison</td>
<td>2-46</td>
</tr>
<tr>
<td>2.20</td>
<td>Typical LED Drive Circuit</td>
<td>2-49</td>
</tr>
<tr>
<td>2.21</td>
<td>Integration Of LED And LED Driver Using TSV</td>
<td>2-52</td>
</tr>
<tr>
<td>2.22</td>
<td>Simple Power MOSFET Motor Controller</td>
<td>2-57</td>
</tr>
<tr>
<td>2.23</td>
<td>Basic Operating Principle Of Inverter</td>
<td>2-63</td>
</tr>
<tr>
<td>2.24</td>
<td>System Block Diagram Of An Air Conditioner</td>
<td>2-65</td>
</tr>
<tr>
<td>3.1</td>
<td>Mitsubishi’s IGBT (Insulated Gate Bipolar Transistor) Generations</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2</td>
<td>Infineon’s MOSFET Generations</td>
<td>3-4</td>
</tr>
<tr>
<td>3.3</td>
<td>Intel’s FinFET Design</td>
<td>3-5</td>
</tr>
<tr>
<td>3.4</td>
<td>Fuji’s MOSFET versus Super Junction MOSFET</td>
<td>3-6</td>
</tr>
<tr>
<td>3.5</td>
<td>NEC’s GaN-on-Si Power Transistor</td>
<td>3-7</td>
</tr>
<tr>
<td>3.6</td>
<td>Fujitsu’s GaN-on-SiC HEMT Transistor</td>
<td>3-8</td>
</tr>
<tr>
<td>3.7</td>
<td>Power Semiconductor Market Forecast</td>
<td>3-10</td>
</tr>
<tr>
<td>3.8</td>
<td>Power Semiconductor Market Shares</td>
<td>3-12</td>
</tr>
<tr>
<td>3.9</td>
<td>IGBT Module Market Shares</td>
<td>3-13</td>
</tr>
<tr>
<td>3-10</td>
<td>IGBT Discrete Market Shares</td>
<td>3-14</td>
</tr>
<tr>
<td>3.11</td>
<td>MOSFET Market Shares</td>
<td>3-15</td>
</tr>
<tr>
<td>3.12</td>
<td>Market Shares For Super Junction MOSFET</td>
<td>3-21</td>
</tr>
<tr>
<td>3.13</td>
<td>SJ MOSFETs as an Interim Solution</td>
<td>3-22</td>
</tr>
<tr>
<td>3.14</td>
<td>Power Transistor Market Share By Application</td>
<td>3-24</td>
</tr>
<tr>
<td>3.15</td>
<td>Power Discrete Market For Renewable Energy</td>
<td>3-25</td>
</tr>
<tr>
<td>3.16</td>
<td>Power Discrete Market Hybrid For and Electric Vehicles</td>
<td>3-26</td>
</tr>
<tr>
<td>3.17</td>
<td>Power Discrete Market For General LED Lighting</td>
<td>3-27</td>
</tr>
<tr>
<td>3.18</td>
<td>Power Discrete Market For Industrial Motor Control</td>
<td>3-28</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.19</td>
<td>Forecast of Widebandgap Semiconductor Market</td>
<td>3-30</td>
</tr>
<tr>
<td>4.1</td>
<td>Silicon-Based Devices Reaching Maturity</td>
<td>4-2</td>
</tr>
<tr>
<td>4.2</td>
<td>Enhancement Mode GaN On Si Transistor</td>
<td>4-14</td>
</tr>
<tr>
<td>4.3</td>
<td>AlGaN/GaN HEMT, GaN MOSFET, MOS-HEMT</td>
<td>4-18</td>
</tr>
<tr>
<td>4.4</td>
<td>GaN HEMT Material Structure On Si Substrate</td>
<td>4-34</td>
</tr>
<tr>
<td>4.5</td>
<td>Power Package Integration Roadmap</td>
<td>4-43</td>
</tr>
</tbody>
</table>

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Product Families And The Principal End Uses Of Power Products</td>
<td>2-2</td>
</tr>
<tr>
<td>2.2</td>
<td>Advantages And Disadvantages Of GaN Lateral HEMTs</td>
<td>2-36</td>
</tr>
<tr>
<td>2.3</td>
<td>Light Source Comparison</td>
<td>2-46</td>
</tr>
<tr>
<td>2.4</td>
<td>Forecast Of GaN And SiC Power Devices By End Applications</td>
<td>2-73</td>
</tr>
<tr>
<td>3.1</td>
<td>Market Shares For Japanese Companies</td>
<td>3-18</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical Properties Of Select Semiconductor Materials</td>
<td>4-4</td>
</tr>
<tr>
<td>4.2</td>
<td>Wide Bandgap Material Properties</td>
<td>4-7</td>
</tr>
<tr>
<td>4.3</td>
<td>Lattice Constant And CTE Of Semiconductor Starting Material</td>
<td>4-11</td>
</tr>
<tr>
<td>4.4</td>
<td>GaN FET Vs Si MOSFET Characteristics</td>
<td>4-16</td>
</tr>
<tr>
<td>4.5</td>
<td>Standard Chemical Solution For Surface Preparation Of SiC Substrates</td>
<td>4-26</td>
</tr>
<tr>
<td>4.6</td>
<td>Interface Trap Densities For 4H-SiC Under Different Process Conditions.</td>
<td>4-31</td>
</tr>
</tbody>
</table>